실험 목표

 TTL IC와 CMOS IC의 전기적 특성을 비교하여 각각의 특성을 이해한다.
 논리 회로 시뮬레이션 프로그램인 Logisim 사용법을 습득하고, 이를 활용하여 설계한 논 리 회로를 실제로 구현하기 전에 시뮬레이션을 통해 설계된 논리 회로를 검증할 수 있는 능 력을 배양한다.

실험 부품

74LS04 (TTL Hex Inverter)
74HC04 (CMOS Hex Inverter)
74LS08 (Quad 2-Input AND Gate)
74LS86 (Quad 2-Input XOR Gate)
+5V DC Power Supply
Breadboard
Digital Multimeter (DMM)

관련 이론

1. Datasheet에 근거한 TTL IC와 CMOS IC의 입출력 특성 비교

74LS04와 74HC04의 datasheet를 근거로 I_{OH} 의 변화에 따라 V_{OH} 가 어떻게 변화하는지 이해한다.

2. Logisim 사용법

각자의 컴퓨터에 Logisim 프로그램을 설치하고 이를 이용하여 논리 회로를 그리고 시뮬레이션 한다.

실험 순서

실험 A. I_{OH}의 변화에 따른 V_{OH}의 변화 측정 실험

74LS04는 TTL 타입의 Hex inverter이며, 74HC04는 CMOS 타입의 Hex inverter이다. 이 두 IC의 출력 특성을 이해하기 위하여 그림 2-1과 같이 출력단에 연결되는 부하저항 R_L 의 값을 변화시키면서 출력전압의 변화를 측정하여 표 2-1에 기록한다.

IC	<i>R_L</i> (측정값)	I _{он} (계산값)	V _{OH} (측정값)
74LS04	무한대		
	100 kΩ		
	50 kΩ		
	12 kΩ		
74HC04	무한대		
	5.1 kΩ		
	1 kΩ		
	510 Ω		
	330 Ω		

표 2-1. IOH의 변화에 따른 VOH의 변화 측정 결과

실험 2 TTL IC와 CMOS IC의 특성 비교 및 Logisim 사용법

실험 B. Logisim 사용법

1. Logisim 설치

각자의 컴퓨터에 Logisim 프로그램을 다운로드 한 후 설치 한다.

2. Logisim을 활용하여 논리 회로를 그리기

주어진 메뉴를 활용하여 그림 2-2와 같은 반가산기 논리 회로를 그린다.

그림 2-2. 반가산기 회로도

3. Logisim을 이용한 논리 회로의 시뮬레이션 방법

위 2단계에서 그린 반가산기 논리 회로의 동작을 시뮬레이션하고 그 결과를 표 2-2에 기록한다.

А	В	С	S
0	0		
0	1		
1	0		
1	1		

표 2-2. 반가산기 시뮬레이션 결과

실험 2 TTL IC와 CMOS IC의 특성 비교 및 Logisim 사용법

4. 실제 회로에 의한 실험

위 3단계에서 시뮬레이션을 통해 검증한 반가산기 논리 회로를 실제 부품을 사용하여 구현하고 그 결과를 표 2-3에 기록한다.

А	В	С	S
0	0		
0	1		
1	0		
1	1		

표 2-3. 반가산기 실험 결과

실험 2 TTL IC와 CMOS IC의 특성 비교 및 Logisim 사용법

실험 결과

위 실험을 통해 얻은 실험 결과를 정리.

결론

실험을 통해 얻은 TTL IC와 CMOS IC의 전기적 특성 가운데 I_{OH}의 변화에 따른 V_{OH}의 변화에 대해 비교하여 설명하시오.

보고서에 포함할 과제

위의 실험 B와 같은 방법으로 전가산기에 대한 1) 진리치표를 작성하고, 2) 이를 논리식으로 변환한 후, 3) Logisim을 사용하여 시뮬레이션을 수행한 결과를 정리하여 제출하시오.